The generator matrix 1 0 0 1 1 1 X^2+X 1 1 X^2 X^2+X 1 X 1 1 X^2 X^2 1 X^2+X 1 1 X^2 1 1 X^2+X 1 X^2+X X^2 1 1 1 1 1 X^2 0 1 1 X^2 X^2+X X 0 1 0 1 0 1 1 X^2 X+1 0 1 X 1 X^2+1 X+1 1 1 X 0 X^2+X+1 X^2+X+1 1 X^2+X 0 1 X X 1 0 0 1 X+1 X^2+1 0 1 X^2+X+1 X^2+X+1 1 X^2 1 0 0 1 1 1 0 1 X^2 0 1 X^2+X+1 X^2+X+1 0 X^2+1 X^2+X 1 X^2+X X^2+X 1 X^2+1 X^2+X+1 X^2+X X+1 X+1 X^2+X+1 X^2 1 X^2+1 X^2+X+1 0 0 X 1 1 0 0 0 X^2 1 1 0 0 0 X 0 0 0 0 0 0 0 0 0 X^2 0 0 0 X^2 X^2 X^2 X^2 X^2 X X X^2+X X^2+X X^2+X X X X^2+X X X X^2 X X X^2+X X^2 X 0 X^2+X 0 0 0 0 X 0 0 0 X^2 X^2 0 X^2 X X^2+X X X^2+X X X^2+X X X^2+X 0 X^2 X X^2 X^2+X X X X^2 X^2 X^2 X^2+X X^2+X X^2 0 X X^2 X^2 0 X^2+X X^2+X 0 0 0 0 0 X X^2+X X^2+X X^2 X^2+X X^2 X X^2 0 X^2+X X^2+X 0 X X^2+X X^2+X X X X^2 X^2+X 0 0 X^2+X 0 0 0 X 0 X^2 X^2 X^2 X X^2 0 X^2 X^2 generates a code of length 40 over Z2[X]/(X^3) who´s minimum homogenous weight is 32. Homogenous weight enumerator: w(x)=1x^0+265x^32+244x^33+942x^34+1060x^35+2108x^36+2284x^37+3704x^38+3500x^39+4362x^40+3568x^41+3834x^42+2588x^43+2120x^44+848x^45+734x^46+212x^47+282x^48+28x^49+64x^50+12x^52+4x^53+2x^54+2x^56 The gray image is a linear code over GF(2) with n=160, k=15 and d=64. This code was found by Heurico 1.16 in 25.4 seconds.